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Abstract. The transformation coefficients between oscillator harmonics and hyperspherical
harmonics are derived analytically for an arbitrary number of particles with arbitrary masses,
which allows us to express the transformation coefficients among the hyperspherical harmonics with
different sets of variables in terms of those for oscillator harmonics and facilitates the variational
calculations with hyperspherical harmonics. The diagonalization of the Hamiltonian forD− system
in a quantum well is given as an example to demonstrate the applications.

1. Introduction

It is well known that hyper-spherical harmonics and oscillator harmonics are the two most
important basis functions in numerical diagonalizations of Hamiltonians for finite systems
(atoms and nuclei). In recent years, there has been increasing interest in the study of finite
systems in two dimensions such as few anyons in a harmonic potential [1–3], few electrons
in parabolic quantum dots [4–9], electron–hole complex and the like [10]. In the study
of low-dimensional few-body problems, hyperspherical harmonics and oscillator harmonics
continue to be the most powerful and extensively used basis functions. Those who are used
to the variational calculations with these functions are aware of the difficulties in calculating
the particle–particle interaction matrix elements and symmetrizing the basis functions when
dealing with identical-particle systems. The difficulties can be overcome if the transformation
coefficient of harmonics with different sets of internal coordinates as arguments are known. In
a previous paper [11], we presented the transformation coefficients for oscillator harmonics,
which can be most easily derived in the formalism of second quantization operators, while
a direct derivation of the transformation coefficients for hyper-spherical harmonics turns out
to be complicated and lengthy. Instead of deriving the transformation coefficients for hyper-
spherical harmonics, if the transformation coefficients between hyper-spherical harmonics and
oscillator harmonics are known, the transformation coefficients for hyper-spherical harmonics
are also known. In section 2, we use this strategy to derive the transformation coefficients for
hyper-spherical harmonics. In section 3, an example is given to illustrate their applications.
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2. The formalism

2.1. Oscillator harmonics and hyper-spherical harmonics

Let us consider anN -body quantum mechanical system with arbitrary masses. Let{Eην; ν =
1, . . . , N−1} be a set of Jacobi coordinates such that eachEην is the displacement of the centre-
of-mass (c.m.) of a particle cluster from the c.m. of another particle cluster and such that no
two such vectors connect the same c.m. The reduced mass associated withEην is denoted by
µν . We define

Eξν =
√
µνω

h̄
Eην (1)

whereω is the oscillator frequency. Then the Hamiltonian for the relative motion in a harmonic
potential is

Hrel =
N−1∑
ν=1

1
2(p

2
ξν

+ ξ2
ν )h̄ω. (2)

Its eigenvalues and eigenfunctions are well known,

9{k} =
N−1∏
ν=1

{
Rnνlν (ξν)

e(ilνϕν )√
2π

}
(3)

Erel =
N−1∑
ν=1

(2nν + |lν | + 1)h̄ω (4)

L =
N−1∑
ν=1

lν (5)

where{k} denotes the full set of 2(N − 1) quantum numbersn1, . . . , nN−1; l1, . . . , lN−1 in
brevity,ϕν is the polar angle ofEξν and

Rnl(ξ) = Nnlξ lL|l|n (ξ2)e(−ξ
2/2) (6)

whereNnl =
√

2n!/0(n + |l| + 1), L|l|n is a Laguerre polynomial. For the following purpose,
we rewrite equation (3) into

9{k} =
n1∑

m1=0

. . .

nN−1∑
mN−1=0

{
D({k};m1, . . . , mN−1)

N−1∏
ν=1

ξ2mν+|lν |
ν

e(ilνϕν )√
2π

}
e−ξ

2/2 (7)

D({k};m1, . . . , mN−1) =
N−1∏
ν=1

(−)mν√2nν !(nν + |lν |)!
mν !(nν −mν)!(mν + |lν |)! . (8)

We further define the hyper-radiusρ and hyper-anglesφ1, . . . , φN−2 which are related to
the norm ofEξν by

ξν = ρ
( ν−1∏
j=0

sinφj

)
cosφν. (9)

In this expression,φ0 ≡ π/2 andφN−1 ≡ 0 are understood.
With hyper-spherical coordinates,Hrel is then given by

Hrel = h̄ω

2

[
− 1

ρ2N−3

∂

∂ρ
ρ2N−3 ∂

∂ρ
+
32(�)

ρ2
+ ρ2

]
(10)
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where32(�) is the grand orbital operator, defined by

32(�) =
N−3∑
ν=0

K(ν)(φN−2−ν)−
N−1∑
ν=1

ˆ̀2(ϕν)
(
∏ν−1
j=0 sin2 φj ) cos2 φν

(11)

K(ν)(φN−2−ν) = 1∏N−3−ν
j=0 sin2 φj

{
∂2

∂φ2
N−2−ν

+

[
(1 + 2ν)

cosφN−2−ν
sinφN−2−ν

− sinφN−2−ν
cosφN−2−ν

]
∂

∂φN−2−ν

}
(12)

where ˆ̀(ϕ) = −i∂/∂ϕ, � denotes a set of 2N − 3 angular variablesφ1, . . . , φN−2,
ϕ1, . . . , ϕN−1. By setting8 = Re(ρ)Y (�), then the eigenequationHrel8 = Erel8 splits
into
h̄ω

2

[(
− 1

ρ2N−3

d

dρ
ρ2N−3 d

dρ
+
λ(λ + 2N − 4)

ρ2

)
+ ρ2

]
Re(ρ) = ErelRe(ρ) (13)

32(�)Y (�) = λ(λ + 2N − 4)Y (�). (14)

The eigenvalues of equation (13) areErel = h̄ω(2nρ+λ+N−1), the associated eigenfunctions
are

<nρλ(ρ) = NnρλρλLλ+N−2
nρ

(ρ2)e−ρ
2/2. (15)

The eigenfunctions of equation (14) are hyper-spherical harmonic functions in two space
dimensions, given by

Y[λ](�) =
[ N−2∏
ν=1

P
λν+1,lν
ν,ñν

(φν)

][ N−1∏
j=1

e(ilj ϕj )√
2π

]
(16)

where [λ] denotes a set of 2N−3 quantum numbers̃n1, . . . , ñN−2, l1, . . . , lN−1; λN−1 = |lN−1|,
λi = 2ñi + λν+1 + |li |, λ1 = 2ñ1 + λ2 + |l1|; λ =

∑N−1
ν=1 λν ,

Pλν+1,łν
ν,nν

(φ) = 2λν+1+(N−2−ν),lν
ν

ν∑
m=0

(−)ν−m
(
ν + λν+1 + (N − 2− ν)

m

)(
ν + |lν |
ν −m

)
×(cosφ)2m+|lν |(sinφ)2(ν−m)+λν+1 (17)

where2l,l′
n =

√
2(2n + l + |l′| + 1)n!(n + l + |l′|)!/[(n + l)!(n + |l′|)!] are the normalization

constants, such that∫
d�Y ∗[λ](�)Y[λ′](�) = δ[λ],[λ′] (18)

where d� =∏N−2
i=1 [(sinφi)2(N−i)−3 cosφi dφi ]

∏N−1
j=1 dϕj .

2.2. Some auxiliary formula

(a) Since theP ll
′

i,n(φ)defined in equation (17) form a complete set in the domain(06 φ 6 π/2),
we have

sink φ cosk
′
φ =

∑
n

F
k,k′
ill′nP

ll′
i,n(φ) (19)

where the expansion coefficient is

Fkk
′

ill′n =
∫ π/2

0
dφ (sinφ)2(N−i)+k−3(cosφ)k

′+1P ll
′

i,n(φ)

= θ l+(N−i−2),l′
n

n∑
m=0

(−)n−m
(
n + l + (N − i − 2)

m

)(
n + |l′|
n−m

)
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×I2(N+n−m−i)+l+k−3,2m+|l′|+k′+1 (20)

Ii,i ′ = εii ′ (i − 1)!!(i ′ − 1)!!

(i + i ′)!!
εii ′ =

{ π
2

for evenl1 andl′1
1 others.

(21)

(b) With k − λ = even, we have

ρke−ρ
2/2 =

∑
nρ

Gk
nρλ

Renρλ(ρ) (22)

where the expansion coefficients are

Gk
nρλ
=
∫ ∞

0
ρ(k+2N−3)e−ρ

2/2Renρλ(ρ) dρ

= 1

2
Nnρλ

nρ∑
m=0

(−)m
m!

(
nρ + λ +N − 2

nρ −m
)(

k + 2m + λ + 2N − 4

2

)
!. (23)

2.3. The transformation coefficients

Using equations (20) and (22), we have

ξ
s1
1 . . . ξ

sN−1

N−1 =
∑
n′′ρ

∑
ñ′′1

. . .
∑
ñ′′N−2

GK
n′′ρλ

Ren′′ρλ′′(ρ)
N−2∏
j=1

{
F
sj tj

jλ′′j+1łj
P
λ′′j+1,lj

j,ñ′′j
(φj )

}
(24)

whereK =∑N−1
i=1 si , tj =

∑N−1
i=j+1 si .

Making use of equations (7) and (24), we finally obtain the explicit expression for the
transformation coefficient

E({k}, {nρ, [λ]}) ≡ 〈9{k}(ξ1, . . . , ξN−1)|8{nρ,[λ]}(ρ,�)〉

=
n1∑

m1=0

. . .

nN−1∑
mN−1=0

D({k};m1 . . . mN−1)G
K
ñρλ

N−2∏
j=1

F
(2mj+|lj |),tj
ñj λj+1łj

. (25)

2.4. The transformation coefficients for hyper-spherical harmonics in terms of the
transformation coefficient for oscillator harmonics

Let us define the transformation coefficients for oscillator harmonics by

B({k}α; {k′}β) = 〈9{k}(ξα1 , . . . , ξαN−1)|9{k′}(ξβ1 , . . . , ξβN−1)〉 (26)

where{ξαi }and{ξβi }are two different sets of Jacobi coordinates assigned to the system. Explicit
expression forB({k}α; {k′}β) has been given in [11] .

Let us define the transformation coefficients for hyper-spherical harmonics by

Z([λ]α; [λ′]β) = 〈Y[λ](�
α)|Y[λ′](�

β)〉 (27)

which we are going to derive. Then we have

Z([λ]α; [λ′]β) = 〈8{0,[λ]}(ρ,�α)|8{0,[λ′]}(ρ,�β)〉
=
∑
{k}

∑
{k′}
〈8{0,[λ]}(ρ,�α)|9{k}(ξα1 , . . . , ξαN−1)〉

×〈9{k}(ξα1 , . . . , ξαN−1)|9{k′}(ξβ1 , . . . , ξβN−1)〉
×〈9{k′}(ξβ1 , . . . , ξβN−1)|8{0,[λ′]}(ρ,�β)〉
=
∑
{k}

∑
{k′}
E({k}, {0, [λ]}) · B({k}α; {k′}β) · E({k}, {0, [λ′]}) (28)

where the sums are subject to the conservation of energy and angular momentum.
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Figure 1. Schematic definition of coordinates set-α and set-β.

3. Example of applications

Let us consider a system of two electrons bound to a donor ion in anx–y plane (denoted by
D−) [12–24]. The Schrodinger equation is,{ 2∑

j=1

[
p2
j

2m∗e
− e2

4πεrj

]
+

e2

4πεr12

}
9(Er1, Er2) = E9(Er1, Er2) (29)

wherem∗e is the effective mass of an electron,ε is the dielectric constant,Erj is the displacement
of thej th electron from the donor ion (see figure 1).

With the effective atomic units (i.e., energy unit ism∗ee
4/(4πεh̄)2, length unit is

4πεh̄2/m∗ee
2), equation (29) can be more succinctly written as,{ 2∑

j=1

[
−1

2
∇Erj −

1

rj

]
+

1

r12

}
9(Er1, Er2) = E9(Er1, Er2). (30)

Let (xj , yj ) be the position of thej th electron. We introduce two different sets of hyper-
spherical coordinates to describe the system as follows,

(x1, y1) = (R cosφα cosϕα1 , R cosφα sinϕα1 )

(x2, y2) = (R sinφα cosϕα2 , R sinφα sinϕα2 )
(31)

and

(xrel, yrel) ≡ (x2 − x1, y2 − y1) = (
√

2R cosφβ cosϕβ1 ,
√

2R cosφβ sinϕβ1 )

(xcm, ycm) ≡
(x1 + x2

2
,
y1 + y2

2

)
=
(√

1

2
R sinφβ cosϕβ2 ,

√
1

2
R sinφβ sinϕβ2

)
(32)

where(xrel, yrel) denote the relative coordinates, and(xcm, ycm) denote the c.m. coordinates
of the two electrons. With hyper-spherical coordinates, equation (30) can be rewritten as,{

−1

2

[
∂2

∂R2
+

3

R

∂

∂R
− 3

2(�)

R2

]
+
U(�)

R

}
9(R,�) = E9(R,�) (33)

where

32(�) = ∂2

∂φ2
+

(
cosφ

sinφ
− sinφ

cosφ

)
∂

∂φ
+
ˆ̀2(ϕ1)

cos2 φ
+
ˆ̀2(ϕ2)

sin2 φ

U(�) = 1√
2 cosφβ

− 1

cosφα
− 1

sinφα

(34)
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where� ≡ {φ, ϕ1, ϕ2} refers either to{φα, ϕα1 , ϕα2 } or to {φβ, ϕβ1 , ϕβ2 }.
For theD− system,N = 3. The eigenfunctions for32(�) are (see equation (16)),

Y[λ] = P l2,l11,ñ (φ)

2∏
j=1

eilj ϕj
√

2π
(35)

with eigenvaluesλ = 2ñ + |l1| + |l2|.
We expand the wavefunction in equation (33) in terms of hyper-spherical harmonics

Y[λ](�),

9(R,�) =
∑
[λ]

F[λ](R)Y[λ](�). (36)

Then we obtain a set of coupled second-order differential equations for{F[λ](R)},

−1

2

[
d2

dR2
+

3

R

d

dR
− λ(λ + 2)

R2

]
F[λ](R) +

1

R

∑
[λ′]

U[λ],[λ′]F[λ′](R) = EF[λ](R) (37)

whereU[λ],[λ′] are the coupling constants,

U[λ],[λ′] =
∫
Y ∗[λ](�)U(�)Y[λ′](�) d�. (38)

Until now we have not specified the angular variables for the basis functions. In practice,
we use{R, φβ, ϕβ1 , ϕβ2 } as the independent variables for the basis functions. This has the
advantage that imposing exchange symmetry will be straightforward: since the exchange of
electrons 1
2 is equivalent toϕβ1 → ϕ

β

1 + π , we takel1 = odd for spin-singlet states and
l1 = even for spin-triplet states. The coupling constantsU[λ],[λ′] turn out to be

U[λ],[λ′] = 1√
2

∫
Y ∗[λ](�

β)
1

cosφβ
Y[λ](�

β) d�β −
∫
Y ∗[λ](�

β)
1

cosφα
Y[λ′](�

β) d�β

−
∫
Y ∗[λ](�

β)
1

sinφα
Y[λ′](�

β) d�β

= 1√
2

∫
Y ∗[λ](�

β)
1

cosφβ
Y[λ](�

β) d�β

−
∑
[λ′′]

∑
[λ′′′]

Z([λ]β, [λ′′]α)Z([λ′]β, [λ′′′]α)
∫
Y ∗[λ′′](�

α)
1

cosφα
Y[λ′′′](�

α) d�α

−
∑
[λ′′]

∑
[λ′′′]

Z([λ]β, [λ′′]α)Z([λ′]β, [λ′′′]α)
∫
Y ∗[λ′′](�

α)
1

sinφα
Y[λ′′′](�

α) d�α

= 1√
2
H[λ],[λ′] − 2

∑
[λ′′]

∑
[λ′′′]

Z([λ]β, [λ′′]α)Z([λ′]β, [λ′′′]α)H[λ′′],[λ′′′] (39)

where

H[λ],[λ′] ≡
∫
Y ∗[λ](�)

1

cosφ
Y[λ′](�) d�

= δl1,l′1δl2,l′2
ν∑
k=0

ν ′∑
k′=0

(−)ν+ν ′−k−k′
(
ν + |l2|
k

)(
ν + |l1|
ν − k

)(
ν ′ + |l2|
k′

)(
ν ′ + |l1|
ν ′ − k′

)
×I2(ν+nu′−k−k′+|l2|)+1,2(k+k′+|l1|). (40)

In equation (37), asR → ∞, F[λ](R)→ exp(−R/ζ), whereζ = 1/
√−2E. Therefore

we make the substitutionρ = 2R/ζ , and rewriteF[λ](R) into

F[λ](R) = u[λ](ρ)e
−ρ/2. (41)
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Table 1. Groundstate energies of theD− system in two space dimensions.NLP is the number of
Laguerre polynomials andNHH is the number of hyper-spherical harmonics used in the calcalations.

NLP

NHH 3 4 5 6 7

36 −2.192 0710 −2.193 0423 −2.193 0885 −2.193 0851 −2.193 0831
49 −2.202 1833 −2.203 6324 −2.203 7466 −2.203 7486 −2.203 7469
64 −2.209 3718 −2.211 2460 −2.211 4402 −2.211 4512 −2.211 4501

100 −2.217 9319 −2.220 4753 −2.220 8324 −2.220 8698 −2.220 8717
196 −2.225 7341 −2.229 0709 −2.229 6825 −2.229 7803 −2.229 7930
256 −2.227 6958 −2.231 2664 −2.231 9663 −2.232 0902 −2.232 1091

Substituting equation (41) into (37), we obtain the eigenequations foru[λ](ρ),

d2u[λ](ρ)

dρ2
+

(
3

ρ
− 1

)
du[λ]

dρ
− 3

2ρ
u[λ](ρ)− λ(λ + 2)

ρ2
u[λ](ρ) = ζ

ρ

∑
[λ′]

U[λ],[λ′]u[λ′](ρ). (42)

We expandu[λ](ρ) in terms of Laguerre polynomialsLγn (ρ) with γ = 2,

u[λ](ρ) =
∑
n

Cn,[λ]L
γ
n (ρ). (43)

Substituting equation (43) into (42), multiplying
√
n!/(γ + n)!ρ4e−ρLγn (ρ) to equation (42)

and integrating overρ, we obtain the recurrence formula for the expansion coefficients,Cn,[λ] ,

(n + 5
2)(n + 3)Cn+1,[λ] − [λ(λ + 2) + (n + 3

2)(2n + 3)]Cn,[λ] + (n + 1
2)nCn−1,[λ]

+ζ
∑
[λ′]

U[λ],[λ′] [(n + 3)Cn+1,[λ′] − (2n + 3)Cn,[λ′] + nCn−1,[λ′] ] = 0. (44)

The secular equation of the linear and homogeneous equation (44) is solved to obtain the
eigenenergies and eigenfunctions.

In table 1, we present the groundstate energies of theD− system, which is a state with
singlet spin andL = 0. NLP , the numbers of Laguerre polynomials used in our calculations,
are 3, 4, 5, 6, 7; while,NHH , the numbers of hyper-spherical harmonics, are 36, 49, 64, 81,
196, 256. From table 1, we see that the convergence of the groundstate energy is very fast
with NLG, i.e., a small value ofNLG is sufficient to obtain accurate groundstate energies. In
contrast, a large value ofNHH is required.

From the normalization condition with variables of set-α,

1=
∫
|9(R, φα, ϕα1 , ϕα2 )|2R3 cosφα sinφα dR dφα dϕα1 ϕ

α
2 (45)

we define a shape-density function in the manner,

ρs(R, φ
α, θα) = |9(R, φα, ϕα1 , ϕα2 )|2R3 cosφα sinφα (46)

which gives the probability density for the system to stay at a certain size and shape of geometric
configuration [25]. Due to the rotational symmetry,ρs depends on the polar anglesϕα1 andϕα2
throughθα ≡ ϕα2 − ϕα1 .

In figure 2, the shape density for the groundstate is presented as a function of [φα, θα]
for different values ofR. In the [φα, θα] plane, point [45◦, 180◦] corresponds to a collinear
structure with the donor ion at the midpoint of the two electrons (hereafter referred to as a
dumbbell), which provides the optimal binding; point [45◦, 0] corresponds to the overlap of
the two electrons. In figure 2, whenR is small, the electron–electron interaction does not play
a role, the distribution ofρs is rather smooth. AsR increases, a minimum appears at [45◦, 0],
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Figure 2. Distribution of the shape-density functionρs(R, φα, θα) in the [φα, θα ] plane with
different values ofR for the groundstate . The unit forR ism∗e e2/(4πεh̄2).

indicating an attempt to avoid the overlap of the two electrons. AsR increases further, the
minimum evolves continuously into a valley along theθα = 45◦ axis, indicating a preference
to the configuration with one electron being very close to the donor ion and another electron
being far away from it whenR is large. In any case, however, since the two electrons have to
rotate in the opposite directions to keep their total orbital angular momentum to be zero, the
distribution ofρs does not suggest the existence of an very optimal value ofθα.

To summarize, we have presented a formula for calculating the transformation coefficients
for hyper-spherical harmonics. TheD− system has been given as an example to demonstrate
how the formula can be used to solve the few-body problems in two space dimensions. When a
system including more electrons is considered, imposing the exchange symmetry on the basis
functions will be much more complicated. The transformation coefficients also provide a tool
to construct symmetrized basis functions [26].
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