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Abstract. The transformation coefficients between oscillator harmonics and hyperspherical
harmonics are derived analytically for an arbitrary number of particles with arbitrary masses,
which allows us to express the transformation coefficients among the hyperspherical harmonics with
different sets of variables in terms of those for oscillator harmonics and facilitates the variational
calculations with hyperspherical harmonics. The diagonalization of the Hamiltoni&afeystem

in a quantum well is given as an example to demonstrate the applications.

1. Introduction

It is well known that hyper-spherical harmonics and oscillator harmonics are the two most
important basis functions in numerical diagonalizations of Hamiltonians for finite systems
(atoms and nuclei). In recent years, there has been increasing interest in the study of finite
systems in two dimensions such as few anyons in a harmonic potential [1-3], few electrons
in parabolic quantum dots [4-9], electron—hole complex and the like [10]. In the study
of low-dimensional few-body problems, hyperspherical harmonics and oscillator harmonics
continue to be the most powerful and extensively used basis functions. Those who are used
to the variational calculations with these functions are aware of the difficulties in calculating
the particle—particle interaction matrix elements and symmetrizing the basis functions when
dealing with identical-particle systems. The difficulties can be overcome if the transformation
coefficient of harmonics with different sets of internal coordinates as arguments are known. In
a previous paper [11], we presented the transformation coefficients for oscillator harmonics,
which can be most easily derived in the formalism of second quantization operators, while
a direct derivation of the transformation coefficients for hyper-spherical harmonics turns out
to be complicated and lengthy. Instead of deriving the transformation coefficients for hyper-
spherical harmonics, if the transformation coefficients between hyper-spherical harmonics and
oscillator harmonics are known, the transformation coefficients for hyper-spherical harmonics
are also known. In section 2, we use this strategy to derive the transformation coefficients for
hyper-spherical harmonics. In section 3, an example is given to illustrate their applications.
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2. The formalism

2.1. Oscillator harmonics and hyper-spherical harmonics

Let us consider av-body quantum mechanical system with arbitrary masses{i,ev =

1,..., N -1} be aset of Jacobi coordinates such that eadtithe displacement of the centre-
of-mass (c.m.) of a particle cluster from the c.m. of another particle cluster and such that no
two such vectors connect the same c.m. The reduced mass associatéd iwittenoted by

. We define

s
& = i My (1)

wherew is the oscillator frequency. Then the Hamiltonian for the relative motion in a harmonic
potential is

N-1
Heo =Y 3(pZ +&Dho. )
v=1
Its eigenvalues and eigenfunctions are well known,
N-1 (l,¢.)
e
Wiy = {anlv &) —— } 3)
(k) !:[1 o
N-1
Erq =Y _(2n, +|l,| + Dho (4)
v=1
N-1
L=Y"1, (5)
where{k} denotes the full set of@ — 1) quantum numbersy, ..., ny_1;01, ..., Iy_1 1N
brevity, ¢, is the polar angle of, and
Ru(§) = Ny&' LIl (2)e~572 (6)

whereN,; = /2n!/T(n +]I] + 1), L"isa Laguerre polynomial. For the following purpose,
we rewrite equation (3) into

i ni:l ]i]__[l 2, € | e
V=D - {D({k}; mi, ...,my-1) | | & —_}e_ @)
m1=0 my_1=0 v=1 2r

N-1 P 7o 17 INT
(_)m‘, va!(nv + |lv|)'
D{k}; ma, ..., 1) = .
Wimssomv) = [T e S
We further define the hyper-radipsand hyper-anglegs, .. ., ¢y—2 which are related to
the norm of¢, by

C)

v—1
& = p(l_[Sin¢j> C0Sg,. (9)
j=0

In this expressionpy = /2 and¢y_1 = 0 are understood.
With hyper-spherical coordinates,.; is then given by

hiw 1 9 d AAQ)
Hr — = _~ 2N-3 7 + + 2 10
el 2 [ pZN—s 8,0 p 8,0 pz ,0 ( )
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whereA?(Q) is the grand orbital operator, defined by

, N-3 o N-1 éz((p )
A%(Q) = K o)) — d 11
) ; (P-2-) ;(Hﬁ;ésin%,-)cﬁqbu h

K™ (pn-2-0) = Hj_ { 282
[T/ sinfg; |35 _o_,

. [(l+2v) COSPy2-v _ Sm’”‘z‘”} 9 } (12)
S|n¢N727v COS¢N727U 8(pN727v
where E(q)) = —id/d¢p, Q denotes a set of 2 — 3 angular variablesp, ..., ¢y_2,

¢1,...,9N—1. By settingd = Re(p)Y (), then the eigenequatioH,,® = E,,® splits
into

) 1 d ,y3d AL+2N-—4) )

> |:<—W$P % + T +p°|Re(p) = EqRe(p) (13)
A (Q)Y(Q) = A(A+ 2N — DY (Q). (14)

The eigenvalues of equation (13) &g; = hw(2n,+1+N — 1), the associated eigenfunctions
are

W, (0) = Nysp* LiN=2(p?)e 02, (15)

The eigenfunctions of equation (14) are hyper-spherical harmonic functions in two space
dimensions, given by

N=1 ofil;e))
e\'i?b;
} (16)

N-2
Yy (@) = [ Pt (¢v>][ —=
(A 11_[:1 iy ]l:[L N

where p]denotesasetof —3 quantumnumbers, ..., iy 2,11, ..., Iy_1; Ay_1 = lIn_1],
i = 20+ Myer G| Ay = 2+ dp (Il A = Y0t A,

P)W+1,h, (¢) — @kv+1+(N727v),lV Xv:(_)vfm (V + )Lv+1 + (N —-2- V)) (U + |lv| >

m V—m
m=0

X (COS¢)2m+‘l‘,| (Sln ¢)2(U—ln)+)\.|,+1 (17)

where®:! = 22n + 1+ [T+ Dnl(n + 1 + [['DT/[(n + DT(n + [I'D] are the normalization
constants, such that

/ dQ Y5y ()Y (R) = 8py. o) 4o

where d2 = [T, ’[(sing;)*¥ =3 cosg; dei] [T/, do;.

2.2. Some auxiliary formula

(a) Since theiJi{l,; (¢) defined in equation (17) form a complete setin the dort@id ¢ < 7/2),
we have

sinf pcod’ ¢ =y Fif PlY(9) (19
n
where the expansion coefficient is

/2 ) , ,
Fl, = fo do (sing)* ™" =3(cosp)* * P! ()

PN~ _ I+(N—i—=2)\ (n+]|l|
— 91+(N i—2),1 Z(_)n m <I’l + ) <
n m n—m

=0
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X Io(N n—m—i)H+k—3,2m+[ | +k'+1 (20)
T
i — DU G — Dl — for eveni; and/
lii = €iv ¢ ) (.l, ) =1 2 ! ! (21)
@i +int 1 others.
(b) With k — A = even, we have
ple =" G, ;Reu(p) (22)

np

where the expansion coefficients are

o0
_ _ 52
G, = / NI 2Re, , (p) dp
0

- “Z )’”( pHA+N — 2)<k+2m+)»+2N—4>L 23)

p—m 2

2.3. The transformation coefficients

Using equations (20) and (22), we have

=L Y agReneo [T {1, i 00) @9

N2

wherek = YVt 1, = Z,.N:jils,-.
Making use of equations (7) and (24), we finally obtain the explicit expression for the
transformation coefficient

E({k}, {n,, [A]) = (Y1, - - Ev—1) [P, .11y (05 2))

=Y ... ) D(khimy...my_ 1)GMI_[ Fyumiv. (25)

2.4. The transformation coefficients for hyper-spherical harmonics in terms of the
transformation coefficient for oscillator harmonics

Let us define the transformation coefficients for oscillator harmonics by
B({k)a; (K}B) = (Wyy (68, ... &8 _DIWp (EF, ... &0 _D) (26)

where{£”} and{sf } are two different sets of Jacobi coordinates assigned to the system. Explicit
expression foB ({k}«; {k'}8) has been given in [11] .
Let us define the transformation coefficients for hyper-spherical harmonics by

Z([Me: [V1B) = (Y (Q9)[Yp (2°)) (27)
which we are going to derive. Then we have
Z([Me; [M18) = (Propn (0, Q)P0 (0, 7))
Z Z .01 (0, QO EL. . £V 1)
{k} {k'}

W E L ES DWW EL g D)
w1 EL e DIDop (0, 2P))

x (W
x (¥
= Z E({k}, {0, [\ - B({k}e; {(K'}B) - E({k}, {0, [X']D) (28)
(k) (k)

where the sums are subject to the conservation of energy and angular momentum.
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Figure 1. Schematic definition of coordinates setnd sets.

3. Example of applications

Let us consider a system of two electrons bound to a donor ion ir-aplane (denoted by
D7) [12—24]. The Schrodinger equation is,

2 2 2 2
{Z[p" : } : }w@,?z):Ew(a,fz) (29)

2m}  Amer; 4meriy

j=1
wherem is the effective mass of an electreris the dielectric constant; is the displacement
of the jth electron from the donor ion (see figure 1).

With the effective atomic units (i.e., energy unit is}e*/(4meh)?, length unit is
4neﬁz/mje2), equation (29) can be more succinctly written as,

2
1 1 1
(359 - 2|+ i = pvian, (30)
= 2 7 7 r12

Let (x;, y;) be the position of thgth electron. We introduce two different sets of hyper-

spherical coordinates to describe the system as follows,
(x1, y1) = (R cosp® cosgs, R cos¢® singy)

. . . (32)
(x2, y2) = (Rsing” cosypy, R sing” singy)
and
(rets Yret) = (x2 — X1, y2 — y1) = (v/2R cosp” cosg}, V2R cosg? sing))
:mw_\/?-ﬁﬁ\/?-ﬂ-ﬁ (32)
(Xcm»ycm)—< B )-( 2R8Iﬂ¢ cOSp,, 2Rsm¢ sing,

where(x,.;, y-;) denote the relative coordinates, ang,, y.,) denote the c.m. coordinates
of the two electrons. With hyper-spherical coordinates, equation (30) can be rewritten as,

1[92 33 A7 UK _
{__ [_Jria_R_T}r }\IJ(R,Q)_EII/(R,Q) (33)

2| 0R? R
where

A%(Q) = L (@ _ Si”¢> o, P, P2
T 992 sing cosp) dp cofP st (39)
1 1 1

J2cospf  COSpY  singe

UQ) =
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whereQ = (¢, g1, ¢y} refers either tdg®, ¢%, ¢$) or to {¢#, of, o5}
For theD~ systemN = 3. The eigenfunctions fak?(Q2) are (see equation (16)),

ellr‘/’/
= P (9) H

with eigenvalues. = 2a + |I1] + |15].
We expand the wavefunction in equation (33) in terms of hyper-spherical harmonics
Y11 (€2),

(39)

V(R Q) =Y Fy(R)Yp(RQ). (36)
2]
Then we obtain a set of coupled second-order differential equatiof$He(R)},
1[ ¢  3d A(A+2):|

et R | R Z Upy.p Fiu(R) = E Fppy(R) (37)

]
whereU,,1» are the coupling constants,

U = / Y5 (Q)U ()Y1(2) dS2. (38)

Until now we have not specified the angular variables for the basis functions. In practice,
we use{R, ¢*, <pf, (pzﬂ} as the independent variables for the basis functions. This has the
advantage that imposing exchange symmetry will be straightforward: since the exchange of
electrons £2 is equivalent tapf — <pf + 7, we takel; = odd for spin-singlet states and
I1 = even for spin-triplet states. The coupling constabig, m turn out to be

1 i 1
Uplp = % / Y[M(Qﬁ)me(Qﬁ)dQﬁ - f Yg (szﬁ) S¢a Y (QF) dQP

—/Y* (@) =
IR sing

1 * B 1 B B
= TZ/Y[A](Q )COS(f)ﬂ Yy (L2 )dQ

=33 206 B 2.1 o) [ ()
[A"] [2]

=33 2B W) 218, [V 1) / Y( (Q%)

1 7]

~ V) (@) df

Loy @) do
cospe  *]

singe Yy (%) d2
1 1" ls "
= 5t - 23 3 Z(MB. V1) Z(AN1B. [V Net) Hipy o (39)
2 [)LH] [)LIH]

where

I 1
Hp)p = Y[x](Q)—S(ﬁY[)J](Q) do

e (Vv FI +]1 = )
_511115121222( " kk<v |2|>(VU_|]1|><U k/|2|)<\\)/—|kl/|>

=0 k'=
X 2 (0 bnit! —k—k+{Ip])+1, 20k +' I ) - (40)
In equation (37), aR — oo, F;;j(R) — exp(—R/¢), wheres = 1/+/—2E. Therefore
we make the substitution = 2R /¢, and rewriteFp;;(R) into

Fj(R) = upy(p)e /2. (41)
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Table 1. Groundstate energies of ti&~ system in two space dimensionsy p is the number of
Laguerre polynomials andy 5 is the number of hyper-spherical harmonics used in the calcalations.

Nrp

Nuynw 3 4 5 6 7

36 —2.1920710 —2.1930423 —2.193 0885 —2.1930851 —2.1930831
49 —2.2021833 —2.2036324 —2.203 7466 —2.203 7486 —2.203 7469
64 —2.2093718 —2.2112460 —2.2114402 —2.2114512 —2.2114501
100 —2.2179319 —2.2204753 —2.2208324 —2.2208698 —2.2208717
196 —2.2257341 —2.2290709 —2.2296825 —2.229 7803 —2.229 7930
256 —2.2276958 —2.231 2664 —2.231 9663 —2.232 0902 —2.2321091

Substituting equation (41) into (37), we obtain the eigenequationgfdp),
d2upy(p) N (3 1) dup; 3 AL +2)

¢
- - = 2N Upgpupn (o). (42
dp? P dp zpu[x](p) pERLY (p) p %}: DU (). (42)

We expand:y; (p) in terms of Laguerre polynomials) (p) with y = 2,
upy(p) = Y Caai Ll (p). (43)

Substituting equation (43) into (42), multiplyingn!/(y + n)! p*e "L} (p) to equation (42)
and integrating oves, we obtain the recurrence formula for the expansion coefficiéhtg;,

(n+32)(n+3)Charpy — [MA+2) +(n+2) (20 +3)]Cppppy + (0 + HnCy 3]

+¢ Z Upy.pl(n +3)Crarpy — 2+ 3)Cy iy +nCy1p] = 0. (44)
2]
The secular equation of the linear and homogeneous equation (44) is solved to obtain the
eigenenergies and eigenfunctions.

In table 1, we present the groundstate energies ofxthesystem, which is a state with
singlet spin and. = 0. N, p, the numbers of Laguerre polynomials used in our calculations,
are 3, 4, 5, 6, 7; whileNg 5, the numbers of hyper-spherical harmonics, are 36, 49, 64, 81,
196, 256. From table 1, we see that the convergence of the groundstate energy is very fast
with N, g, i.e., a small value oN, ; is sufficient to obtain accurate groundstate energies. In
contrast, a large value &y is required.

From the normalization condition with variables of sgt-

1= f [W(R, 9%, %, 93)1>R3 cosg® sing® dR dp* dp§ ¢ (45)
we define a shape-density function in the manner,
ps(R, 9%, 6%) = [W(R, 9%, 91, ¢3)|*R® cosg” sing* (46)

which gives the probability density for the system to stay at a certain size and shape of geometric
configuration [25]. Due to the rotational symmeipy,depends on the polar anglg$ ande$
through6® = ¢§ — ¢f.

In figure 2, the shape density for the groundstate is presented as a functigh 6f]
for different values ofR. In the [¢“, 6%] plane, point [45, 180°] corresponds to a collinear
structure with the donor ion at the midpoint of the two electrons (hereafter referred to as a
dumbbell), which provides the optimal binding; point {48] corresponds to the overlap of
the two electrons. In figure 2, whehis small, the electron—electron interaction does not play
arole, the distribution op; is rather smooth. A® increases, a minimum appears at{4d,
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Figure 2. Distribution of the shape-density functign (R, ¢%, 6%) in the [p*, 6] plane with
different values ofR for the groundstate . The unit f& is m*e?/(4r eh?).

indicating an attempt to avoid the overlap of the two electrons.RAscreases further, the
minimum evolves continuously into a valley along #ife= 45° axis, indicating a preference

to the configuration with one electron being very close to the donor ion and another electron
being far away from it wherR is large. In any case, however, since the two electrons have to
rotate in the opposite directions to keep their total orbital angular momentum to be zero, the
distribution of p; does not suggest the existence of an very optimal val@é .of

To summarize, we have presented a formula for calculating the transformation coefficients

for hyper-spherical harmonics. T~ system has been given as an example to demonstrate
how the formula can be used to solve the few-body problems in two space dimensions. When a
system including more electrons is considered, imposing the exchange symmetry on the basis

functions will be much more complicated. The transformation coefficients also provide a tool
to construct symmetrized basis functions [26].
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